348 lines
12 KiB
C++
348 lines
12 KiB
C++
#include "calculation.hpp"
|
|
|
|
Calculation::Calculation() {}
|
|
|
|
Calculation::~Calculation() {}
|
|
|
|
/************************************************************************/
|
|
/* 一维数据的复数快速傅里叶变换 */
|
|
/************************************************************************/
|
|
void Calculation::FFT(int n, fftw_complex *in, fftw_complex *out) {
|
|
if (in == NULL || out == NULL) return;
|
|
fftw_plan p;
|
|
p = fftw_plan_dft_1d(n, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
|
|
fftw_execute(p);
|
|
fftw_destroy_plan(p);
|
|
fftw_cleanup();
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* 一维数据的实数快速傅里叶变换 */
|
|
/************************************************************************/
|
|
void Calculation::FFT_R(int n, std::vector<float> &vecData, fftw_complex *out) {
|
|
double in[n];
|
|
for (int i = 0; i < n; i++) {
|
|
in[i] = vecData[i];
|
|
}
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
out[i][0] = (double)vecData[i];
|
|
out[i][1] = 0;
|
|
}
|
|
// create a DFT plan and execute it
|
|
fftw_plan plan = fftw_plan_dft_r2c_1d(n, in, out, FFTW_ESTIMATE);
|
|
fftw_execute(plan);
|
|
// destroy the plan to prevent a memory leak
|
|
fftw_destroy_plan(plan);
|
|
fftw_cleanup();
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* 一维数据的快速傅里叶逆变换 */
|
|
/************************************************************************/
|
|
void Calculation::iFFT(int n, fftw_complex *in, fftw_complex *out) {
|
|
if (in == NULL || out == NULL) return;
|
|
fftw_plan p;
|
|
p = fftw_plan_dft_1d(n, in, out, FFTW_BACKWARD, FFTW_ESTIMATE);
|
|
fftw_execute(p);
|
|
fftw_destroy_plan(p);
|
|
fftw_cleanup();
|
|
}
|
|
|
|
void Calculation::_iFFT(std::vector<float> &vecrealData, std::vector<float> &vecimageData, std::vector<float> &veciFFTData) {
|
|
fftw_complex *inFFt, *outFFt;
|
|
int N = vecrealData.size();
|
|
inFFt = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * N);
|
|
outFFt = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * N);
|
|
|
|
for (int j = 0; j < N; j++) {
|
|
inFFt[j][0] = (double)vecrealData[j];
|
|
inFFt[j][1] = (double)vecimageData[j];
|
|
}
|
|
iFFT(N, inFFt, outFFt);
|
|
for (int i = 0; i < N; i++) {
|
|
outFFt[i][0] *= 1. / N;
|
|
outFFt[i][1] *= 1. / N;
|
|
veciFFTData.push_back(outFFt[i][0]);
|
|
}
|
|
fftw_free(inFFt);
|
|
fftw_free(outFFt);
|
|
}
|
|
|
|
void Calculation::_FFT(std::vector<float> &vecData, std::vector<float> &vecFFTrealData, std::vector<float> &vecFFTimageData) {
|
|
fftw_complex *inHilFFt, *outHilFFt;
|
|
inHilFFt = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * vecData.size());
|
|
outHilFFt = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * vecData.size());
|
|
|
|
for (size_t j = 0; j < vecData.size(); j++) {
|
|
inHilFFt[j][0] = (double)vecData[j];
|
|
inHilFFt[j][1] = 0;
|
|
}
|
|
|
|
FFT(vecData.size(), inHilFFt, outHilFFt);
|
|
// fftShift(outHilFFt, vecData.size());
|
|
for (size_t i = 0; i < vecData.size(); i++) {
|
|
vecFFTrealData.push_back(outHilFFt[i][0]);
|
|
vecFFTimageData.push_back(outHilFFt[i][1]);
|
|
}
|
|
fftw_free(inHilFFt);
|
|
fftw_free(outHilFFt);
|
|
}
|
|
|
|
float Calculation::mean(std::vector<float> &vecData) {
|
|
float meanTemp = 0;
|
|
for (size_t i = 0; i < vecData.size(); i++) {
|
|
meanTemp += vecData[i];
|
|
}
|
|
return meanTemp / vecData.size();
|
|
}
|
|
|
|
float Calculation::getSample_variance(std::vector<float> a) {
|
|
float ss = 0;
|
|
float s = 0;
|
|
float mx = mean(a);
|
|
int len = a.size();
|
|
for (int i = 0; i < len; i++) {
|
|
s = a[i] - mx;
|
|
ss += pow(s, 2);
|
|
}
|
|
return ss / (len - 1);
|
|
}
|
|
|
|
void Calculation::Hanning(std::vector<float> &vecData, std::vector<float> &vecHanningData) {
|
|
int N = vecData.size();
|
|
|
|
float *w = NULL;
|
|
w = (float *)calloc(N, sizeof(float));
|
|
int half, i, idx;
|
|
if (N % 2 == 0) {
|
|
half = N / 2;
|
|
for (i = 0; i < half; i++) // CALC_HANNING Calculates Hanning window samples.
|
|
w[i] = 0.5 * (1 - cos(2 * M_PI * (i + 1) / (N + 1)));
|
|
|
|
idx = half - 1;
|
|
for (i = half; i < N; i++) {
|
|
w[i] = w[idx];
|
|
idx--;
|
|
}
|
|
} else {
|
|
half = (N + 1) / 2;
|
|
for (i = 0; i < half; i++) // CALC_HANNING Calculates Hanning window samples.
|
|
w[i] = 0.5 * (1 - cos(2 * M_PI * (i + 1) / (N + 1)));
|
|
|
|
idx = half - 2;
|
|
for (i = half; i < N; i++) {
|
|
w[i] = w[idx];
|
|
idx--;
|
|
}
|
|
}
|
|
for (int j = 0; j < N; j++) {
|
|
vecHanningData.push_back(w[j]);
|
|
}
|
|
free(w);
|
|
}
|
|
void Calculation::hilbert(std::vector<float> &vecData, std::vector<float> &vecHilbertData, int N) {
|
|
double in[N];
|
|
for (int i = 0; i < N; i++) {
|
|
in[i] = vecData[i];
|
|
}
|
|
fftw_complex *out;
|
|
out = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * N);
|
|
|
|
for (int i = 0; i < N; ++i) {
|
|
out[i][0] = (double)vecData[i];
|
|
out[i][1] = 0;
|
|
}
|
|
// create a DFT plan and execute it
|
|
fftw_plan plan = fftw_plan_dft_r2c_1d(N, in, out, FFTW_ESTIMATE);
|
|
fftw_execute(plan);
|
|
// destroy the plan to prevent a memory leak
|
|
fftw_destroy_plan(plan);
|
|
int hN = N >> 1; // half of the length (N /2)
|
|
int numRem = hN; // the number of remaining elements
|
|
// multiply the appropriate values by 2
|
|
// (those that should be multiplied by 1 are left intact because they wouldn't change)
|
|
for (int i = 1; i < hN; ++i) // 1,2,...,N/2 - 1 的项乘以2
|
|
{
|
|
out[i][0] *= 2;
|
|
out[i][1] *= 2;
|
|
}
|
|
// if the length is even, the number of remaining elements decreases by 1
|
|
if (N % 2 == 0) numRem--;
|
|
// if it's odd and greater than 1, the middle value must be multiplied by 2
|
|
else if (N > 1) // 奇数非空
|
|
{
|
|
out[hN][0] *= 2;
|
|
out[hN][1] *= 2;
|
|
}
|
|
// set the remaining values to 0
|
|
// (multiplying by 0 gives 0, so we don't care about the multiplicands)
|
|
memset(&out[hN + 1][0], 0, numRem * sizeof(fftw_complex));
|
|
// create an IDFT plan and execute it
|
|
plan = fftw_plan_dft_1d(N, out, out, FFTW_BACKWARD, FFTW_ESTIMATE);
|
|
fftw_execute(plan);
|
|
// do some cleaning
|
|
fftw_destroy_plan(plan);
|
|
fftw_cleanup();
|
|
// scale the IDFT output
|
|
for (int i = 0; i < N; ++i) {
|
|
out[i][0] /= N;
|
|
out[i][1] /= N;
|
|
}
|
|
|
|
for (int n = 0; n < N; n++) //输出
|
|
{
|
|
// xr[n]=cos(n*pi/6);//原始信号
|
|
// y_r[n] = s_i[n];
|
|
complex complex_after;
|
|
complex_after.real = out[n][1];
|
|
complex_after.imag = out[n][0];
|
|
float amp = sqrt(complex_after.real * complex_after.real + complex_after.imag * complex_after.imag);
|
|
vecHilbertData.push_back(amp);
|
|
// printf("%d %f\n",n,vecHilbertData[n]);
|
|
}
|
|
fftw_free(out);
|
|
}
|
|
|
|
void Calculation::fftShift(fftw_complex *in, int l) {
|
|
double temp;
|
|
double temp2;
|
|
|
|
for (int j = 0; j < l / 2; j++) {
|
|
temp = in[j + l / 2][0];
|
|
temp2 = in[j + l / 2][1];
|
|
in[j + l / 2][0] = in[j][0];
|
|
in[j + l / 2][1] = in[j][1];
|
|
in[j][0] = temp;
|
|
in[j][1] = temp2;
|
|
}
|
|
}
|
|
|
|
void Calculation::FFTSpec(std::vector<float> &vecData, std::vector<float> &vecFFTSpecData) {
|
|
fftw_complex *inFFt, *outFFt;
|
|
inFFt = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * vecData.size());
|
|
outFFt = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * vecData.size());
|
|
|
|
for (size_t j = 0; j < vecData.size(); j++) {
|
|
inFFt[j][0] = (double)vecData[j];
|
|
inFFt[j][1] = 0;
|
|
}
|
|
FFT(vecData.size(), inFFt, outFFt);
|
|
for (size_t j = 0; j < vecData.size() / 2; j++) {
|
|
vecFFTSpecData.push_back(sqrt(outFFt[j][0] * outFFt[j][0] + outFFt[j][1] * outFFt[j][1]) * 2 / vecData.size());
|
|
}
|
|
}
|
|
|
|
void Calculation::envSpec(std::vector<float> &vecData, std::vector<float> &vecEnvSpecData, int StartFrequency, int EndFrequency) {
|
|
std::vector<float> vecFFTrealData, vecFFTimageData;
|
|
std::vector<float> vecRealData, vecImageData;
|
|
std::vector<float> veciFFtData;
|
|
std::vector<float> veciFFtData2;
|
|
std::vector<float> vecHilbertData;
|
|
_FFT(vecData, vecFFTrealData, vecFFTimageData);
|
|
for (size_t i = 0; i < vecFFTrealData.size(); i++) {
|
|
if (i > (size_t)StartFrequency && i < (size_t)EndFrequency) {
|
|
vecRealData.push_back(vecFFTrealData.at(i));
|
|
vecImageData.push_back(vecFFTimageData.at(i));
|
|
} else {
|
|
vecRealData.push_back(0);
|
|
vecImageData.push_back(0);
|
|
}
|
|
}
|
|
_iFFT(vecRealData, vecImageData, veciFFtData);
|
|
for (size_t j = 0; j < veciFFtData.size(); j++) {
|
|
veciFFtData2.push_back(veciFFtData[j] * 2);
|
|
}
|
|
hilbert(veciFFtData2, vecHilbertData, veciFFtData2.size());
|
|
FFTSpec(vecHilbertData, vecEnvSpecData);
|
|
}
|
|
|
|
void Calculation::GenerateSin(std::vector<float> &vecData) {
|
|
double frequency = 800.0; // Frequency of the sine wave in Hz
|
|
double sampling_rate = 12800.0; // Sampling rate in Hz (8 kHz)
|
|
size_t num_samples = 12800; // Total number of samples (1 second of data)
|
|
double dt = 1.0 / sampling_rate; // Time step in seconds
|
|
|
|
// Generate the sine wave
|
|
for (size_t i = 0; i < num_samples; ++i) {
|
|
vecData.push_back(std::sin(2 * M_PI * frequency * i * dt));
|
|
}
|
|
}
|
|
|
|
void Calculation::Integration(std::vector<float> &vecData, std::vector<float> &retData, double &resolution) {
|
|
std::vector<float> realshiftfft;
|
|
std::vector<float> imageshiftfft;
|
|
std::vector<float> realvalue, imagevalue, ifftData;
|
|
_FFT(vecData, realshiftfft, imageshiftfft);
|
|
|
|
//在频域上进行5-1000 Hz的带通滤波
|
|
for (size_t i = 0; i < vecData.size() / 2 + 1; ++i) {
|
|
double frequency = i * resolution; // 计算当前频率分量
|
|
if (frequency < 5 || frequency > 1000) {
|
|
// 将5 Hz 到 1000 Hz 之外的频率成分设置为0
|
|
realshiftfft[i] = 0.0;
|
|
realshiftfft[i] = 0.0;
|
|
imageshiftfft[i] = 0.0;
|
|
imageshiftfft[i] = 0.0;
|
|
}
|
|
}
|
|
|
|
for (size_t k = 1; k < realshiftfft.size() + 1; k++) {
|
|
double frequency = k * resolution; // 计算当前频率分量
|
|
realvalue.push_back((realshiftfft.at(k - 1) / (frequency * 2 * M_PI)) * 1000 * 2); //单位转换mm/s,*1000 *2 精度损失
|
|
imagevalue.push_back((imageshiftfft.at(k - 1) / (frequency * 2 * M_PI)) * 1000 * 2); //单位转换mm/s,*1000
|
|
}
|
|
|
|
_iFFT(realvalue, imagevalue, retData);
|
|
}
|
|
std::vector<float> Calculation::fftInterpolate(const std::vector<float>& input, size_t outputSize) {
|
|
size_t inputSize = input.size();
|
|
double in[inputSize];
|
|
for (size_t i = 0; i < inputSize; i++) {
|
|
in[i] = input[i];
|
|
}
|
|
// 1. FFTW 初始化
|
|
fftw_complex *freqDomain = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * inputSize);
|
|
fftw_complex *paddedFreqDomain = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * outputSize);
|
|
fftw_plan forwardPlan = fftw_plan_dft_r2c_1d(inputSize, in, freqDomain, FFTW_ESTIMATE);
|
|
|
|
// 2. 执行 FFT
|
|
fftw_execute(forwardPlan);
|
|
|
|
// 3. 频域插值:扩展频谱
|
|
size_t halfSize = inputSize / 2 + 1; // 实数FFT的对称部分
|
|
for (size_t i = 0; i < halfSize; ++i) {
|
|
paddedFreqDomain[i][0] = freqDomain[i][0]; // 实部
|
|
paddedFreqDomain[i][1] = freqDomain[i][1]; // 虚部
|
|
}
|
|
for (size_t i = halfSize; i < outputSize - halfSize; ++i) {
|
|
paddedFreqDomain[i][0] = 0.0; // 实部填零
|
|
paddedFreqDomain[i][1] = 0.0; // 虚部填零
|
|
}
|
|
for (size_t i = outputSize - halfSize; i < outputSize; ++i) {
|
|
paddedFreqDomain[i][0] = freqDomain[inputSize - (outputSize - i)][0];
|
|
paddedFreqDomain[i][1] = freqDomain[inputSize - (outputSize - i)][1];
|
|
}
|
|
|
|
// 4. IFFT 变换回时域
|
|
std::vector<double> output(outputSize);
|
|
fftw_plan inversePlan = fftw_plan_dft_c2r_1d(outputSize, paddedFreqDomain, output.data(), FFTW_ESTIMATE);
|
|
fftw_execute(inversePlan);
|
|
|
|
// 5. 缩放输出结果
|
|
for (double& val : output) {
|
|
val /= outputSize;
|
|
}
|
|
std::vector<float> output2(outputSize);
|
|
for (size_t i = 0; i < outputSize; i++) {
|
|
output2[i] = output[i];
|
|
}
|
|
// 清理 FFTW
|
|
fftw_destroy_plan(forwardPlan);
|
|
fftw_destroy_plan(inversePlan);
|
|
fftw_free(freqDomain);
|
|
fftw_free(paddedFreqDomain);
|
|
|
|
return output2;
|
|
}
|