diff --git a/.settings/language.settings.xml b/.settings/language.settings.xml
index 9f396fc..a813cfe 100644
--- a/.settings/language.settings.xml
+++ b/.settings/language.settings.xml
@@ -5,7 +5,7 @@
-
+
@@ -16,7 +16,7 @@
-
+
diff --git a/jsonparse/cmt_parse.cpp b/jsonparse/cmt_parse.cpp
index 496e426..e399081 100644
--- a/jsonparse/cmt_parse.cpp
+++ b/jsonparse/cmt_parse.cpp
@@ -571,7 +571,7 @@ void JsonData::CmtCmd_87(char* MeasurementID,char* send_data,int& send_length)
get_eigenvalue_res[j].Phase4 = atof(arrRes[j][15].c_str());
get_eigenvalue_res[j].Time = atoi(arrRes[j][17].c_str());
}
- memcpy(send_data,(char*)&get_eigenvalue_res,sizeof(GetEigenvalueRes) * j);
+ memcpy(send_data,(char*)get_eigenvalue_res,sizeof(GetEigenvalueRes) * j);
send_length = sizeof(GetEigenvalueRes) * j;
}
}
diff --git a/scheduler/schedule.cpp b/scheduler/schedule.cpp
index f96df0b..b48aec1 100644
--- a/scheduler/schedule.cpp
+++ b/scheduler/schedule.cpp
@@ -35,12 +35,16 @@ int SensorScheduler::StartSchedule(int short_addr, int &next_duration) {
nth_eigen_value_slice_ = seconds_in_current_wave_slice_ / eigen_value_send_interval_;
seconds_in_current_eigen_slice_ = seconds_in_current_wave_slice_ % eigen_value_send_interval_;
ts_in_eigen_slice_ = false;
+
if (seconds_in_current_eigen_slice_ < eigen_value_slice_total_seconds_ - 3) {
ts_in_eigen_slice_ = true;
- }
+ }
if (ts_in_eigen_slice_) {
nth_eigen_slice_ = (seconds_in_current_eigen_slice_ + 2) / eigen_value_send_duration_;
+ if (nth_eigen_value_slice_ == 0 && nth_eigen_slice_ == 0) {
+ ClearFailureSuccessMap();
+ }
} else {
nth_wave_slice_ = (seconds_in_current_eigen_slice_ - eigen_value_slice_total_seconds_ + 3) / seconds_per_wave_slice_;
}
@@ -135,9 +139,18 @@ int SensorScheduler::StartSchedule(int short_addr, int &next_duration) {
}
}
- // if (retransfer_wave) {
-
- // }
+ if (RetransferWave(short_addr)) {
+ wave_feature_set_inst::instance().GetWaveCfg(short_addr, g_x, g_y, g_z);
+ if (g_x || g_y || g_z) {
+ zlog_warn(zct, "[%d:%x] it is retransfer wave time", id, short_addr);
+ current_request_ = kScheduleWaveForm;
+ return kScheduleWaveForm;
+ } else {
+ next_duration = GetNextDuration(short_addr);
+ zlog_warn(zct, "[%d:%x] no need for wave", id, short_addr);
+ return kScheduleWrongTime;
+ }
+ }
// if (update_.count(id)) {
// // execute config
// zlog_warn(zct, "[%d:%x] in idle time to update config", id, short_addr);
@@ -199,7 +212,24 @@ long SensorScheduler::CalcNextTimestamp(int id, uint16_t short_addr) {
}
}
}
- }
+ } else {
+ if (g_x || g_y || g_z) {
+ if (RetransferWave(short_addr)) {
+ for (int i = 0; i < wave_slice_num_per_eigen_interval_; ++i) {
+ if (slice_sensor_id_[i+forward_wave_slice_num] == 0) {
+ // 判断此空闲位置是否被占用
+ long current_wave_slice_ts = current_wave_start_ts_ + nth_eigen_value_slice_ * eigen_value_send_interval_ + eigen_value_slice_total_seconds_ + i * seconds_per_wave_slice_;
+ if (free_slice_ocuppied_.count(current_wave_slice_ts) == 0) {
+ available_ts = current_wave_slice_ts;
+ free_slice_ocuppied_.insert(available_ts);
+ zlog_warn(zct, "[Nxt][%d:%x] %d nth free wave slice will be used to retransfer wave, utc time:[%s]", id, short_addr, i+forward_wave_slice_num, GetUTCTime(available_ts).c_str());
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
if (send_wave_ts > 0 && available_ts > 0) {
long min_ts = std::min(send_wave_ts, available_ts);
zlog_warn(zct, "[Nxt] [%d:%x] next feature send utc time1:%s", id, short_addr, GetUTCTime(min_ts).c_str());
@@ -329,14 +359,46 @@ SensorScheduler::SensorScheduler() {
}
void SensorScheduler::WaveError(int short_addr) {
-
+ auto iter = failure_map_.find(short_addr);
+ if (iter == failure_map_.end()) {
+ failure_map_[short_addr] = 3; // 重试次数
+ zlog_warn(zct, "[WaveError][%x] will try 3 times", short_addr);
+ return;
+ }
+ if (iter->second == 0) {
+ zlog_warn(zct, "[WaveError][%x] no try times");
+ failure_map_.erase(short_addr);
+ return;
+ }
+ iter->second = iter->second - 1;
+ zlog_warn(zct, "[WaveError][%x] remain try %d times", short_addr, iter->second);
return;
}
+bool SensorScheduler::RetransferWave(uint16_t short_addr) {
+ auto iter = failure_map_.find(short_addr);
+ if (iter != failure_map_.end()) {
+ return true;
+ }
+ return false;
+}
+
void SensorScheduler::WaveSuccess(int short_addr) {
+ success_map_[short_addr] = 1;
+ auto iter = failure_map_.find(short_addr);
+ if (iter != failure_map_.end()) {
+ zlog_warn(zct, "[WaveSuccess][%x] try %d times success", short_addr, 4 - iter->second);
+ failure_map_.erase(short_addr);
+ return;
+ }
return;
}
+void SensorScheduler::ClearFailureSuccessMap() {
+ failure_map_.clear();
+ success_map_.clear();
+}
+
long SensorScheduler::GetBaseTimestamp(int short_addr) {
int id = 0;
auto iter = short_addr_map_.find(short_addr);
diff --git a/scheduler/schedule.hpp b/scheduler/schedule.hpp
index 2ce1529..fbe893c 100644
--- a/scheduler/schedule.hpp
+++ b/scheduler/schedule.hpp
@@ -126,6 +126,12 @@ private:
std::map sensor_id_nth_slice_; // 传感器编号与第几个波形发送窗口对应关系
std::map short_addr_map_; // base_relation.json
+ // 存储当前2小时内失败与成功的传感器
+ std::map failure_map_;
+ std::map success_map_;
+ void ClearFailureSuccessMap();
+ bool RetransferWave(uint16_t short_addr);
+
// 空闲时间戳被占用
std::unordered_set free_slice_ocuppied_;