modify log info.

This commit is contained in:
pandx 2024-10-30 18:10:50 +08:00
parent 61d1732b97
commit 4cffd67ea5
2 changed files with 81 additions and 52 deletions

View File

@ -7,6 +7,10 @@
#include <ctime> #include <ctime>
#include <iomanip> #include <iomanip>
#include <json/json.h> #include <json/json.h>
#include <zlog.h>
extern zlog_category_t *zct;
extern zlog_category_t *zbt;
// 当一个传感器来进行通信时 // 当一个传感器来进行通信时
@ -68,17 +72,17 @@ SensorScheduler::SensorScheduler() {
support_modification_ = true; support_modification_ = true;
std::ifstream schedule_file(SCHEDULE_CONFIG); std::ifstream schedule_file(SCHEDULE_CONFIG);
if (schedule_file.good()) { if (schedule_file.good()) {
printf("exist configuration file\n"); zlog_info(zbt, "exist configuration file");
Json::Reader reader; Json::Reader reader;
Json::Value root; Json::Value root;
if (!reader.parse(schedule_file, root, false)) { if (!reader.parse(schedule_file, root, false)) {
printf("invalid format, fail to parse %s\n", SCHEDULE_CONFIG); zlog_error(zbt, "invalid format, fail to parse %s", SCHEDULE_CONFIG);
schedule_file.close(); schedule_file.close();
return; return;
} }
schedule_file.close(); schedule_file.close();
if (!root.isObject()) { if (!root.isObject()) {
printf("invalid format, not an object: %s\n", SCHEDULE_CONFIG); zlog_error(zbt, "invalid format, not an object: %s", SCHEDULE_CONFIG);
return; return;
} }
start_timestamp_ = std::stol(root["schedule_start_timestamp"].asString()); start_timestamp_ = std::stol(root["schedule_start_timestamp"].asString());
@ -110,7 +114,7 @@ SensorScheduler::SensorScheduler() {
wave_slice_num_per_eigen_interval_ = rest_duration / wave_form_send_duration_; wave_slice_num_per_eigen_interval_ = rest_duration / wave_form_send_duration_;
seconds_per_wave_slice_ = rest_duration / wave_slice_num_per_eigen_interval_; seconds_per_wave_slice_ = rest_duration / wave_slice_num_per_eigen_interval_;
} else { } else {
printf("use default configuration\n"); zlog_info(zbt, "use default configuration");
int eigen_value_send_interval = 300; int eigen_value_send_interval = 300;
int wave_form_send_interval = 7200; int wave_form_send_interval = 7200;
int eigen_value_send_duration = 6; int eigen_value_send_duration = 6;
@ -129,17 +133,17 @@ SensorScheduler::SensorScheduler() {
Json::Reader reader; Json::Reader reader;
Json::Value root; Json::Value root;
if (!reader.parse(base_relation_file, root, false)) { if (!reader.parse(base_relation_file, root, false)) {
printf("invalid format, fail to parse %s\n", BASE_RELATION); zlog_error(zbt, "invalid format, fail to parse %s", BASE_RELATION);
base_relation_file.close(); base_relation_file.close();
return; return;
} }
base_relation_file.close(); base_relation_file.close();
if (!root.isArray()) { if (!root.isArray()) {
printf("invalid format, not an array: %s\n", BASE_RELATION); zlog_error(zbt, "invalid format, not an array: %s", BASE_RELATION);
return; return;
} }
if (root.size() == 0) { if (root.size() == 0) {
printf("no element in %s\n", BASE_RELATION); zlog_info(zbt, "no element in %s", BASE_RELATION);
return; return;
} }
@ -150,7 +154,7 @@ SensorScheduler::SensorScheduler() {
for (const auto &item : root) { for (const auto &item : root) {
short_addr = item["pan_id"].asInt(); short_addr = item["pan_id"].asInt();
index = item["id"].asInt(); index = item["id"].asInt();
printf("index:%d, short addr:%d\n", index, short_addr); zlog_info(zbt, "index:%d, short addr:%d", index, short_addr);
short_addr_map_[short_addr] = index; short_addr_map_[short_addr] = index;
} }
} }
@ -161,17 +165,17 @@ SensorScheduler::SensorScheduler() {
Json::Reader reader; Json::Reader reader;
Json::Value root; Json::Value root;
if (!reader.parse(upgrade_file, root, false)) { if (!reader.parse(upgrade_file, root, false)) {
printf("invalid format, fail to parse %s\n", UPGRADE_CONFIG); zlog_error(zbt, "invalid format, fail to parse %s", UPGRADE_CONFIG);
upgrade_file.close(); upgrade_file.close();
return; return;
} }
upgrade_file.close(); upgrade_file.close();
if (!root.isArray()) { if (!root.isArray()) {
printf("invalid format, not an array: %s\n", UPGRADE_CONFIG); zlog_error(zbt, "invalid format, not an array: %s", UPGRADE_CONFIG);
return; return;
} }
if (root.size() > 0) { if (root.size() > 0) {
printf("element in %s\n", UPGRADE_CONFIG); zlog_info(zbt, "element in %s", UPGRADE_CONFIG);
UpgradeInfo info; UpgradeInfo info;
for (const auto &item : root) { for (const auto &item : root) {
info.try_times = item["try_times"].asInt(); info.try_times = item["try_times"].asInt();
@ -184,7 +188,7 @@ SensorScheduler::SensorScheduler() {
info.try_world_time1.push_back(time_item.asString()); info.try_world_time1.push_back(time_item.asString());
} }
upgrade_[item["id"].asInt()] = info; upgrade_[item["id"].asInt()] = info;
printf("id:%d need to upgrade from:%s to %s\n", item["id"].asInt(), zlog_info(zbt, "id:%d need to upgrade from:%s to %s", item["id"].asInt(),
info.current_sw_version.c_str(), info.upgrade_sw_version.c_str()); info.current_sw_version.c_str(), info.upgrade_sw_version.c_str());
} }
} }
@ -196,20 +200,20 @@ SensorScheduler::SensorScheduler() {
Json::Reader reader; Json::Reader reader;
Json::Value root; Json::Value root;
if (!reader.parse(config_update_file, root, false)) { if (!reader.parse(config_update_file, root, false)) {
printf("invalid format, fail to parse %s\n", CONFIG_UPDATE); zlog_error(zbt, "invalid format, fail to parse %s", CONFIG_UPDATE);
config_update_file.close(); config_update_file.close();
return; return;
} }
config_update_file.close(); config_update_file.close();
if (!root.isArray()) { if (!root.isArray()) {
printf("invalid format, not an array: %s\n", CONFIG_UPDATE); zlog_error(zbt, "invalid format, not an array: %s", CONFIG_UPDATE);
return; return;
} }
if (root.size() > 0) { if (root.size() > 0) {
printf("element in %s\n", CONFIG_UPDATE); zlog_info(zbt, "element in %s", CONFIG_UPDATE);
for (const auto &item : root) { for (const auto &item : root) {
update_.insert(item.asInt()); update_.insert(item.asInt());
printf("sensor id:%d need to update\n", item.asInt()); zlog_info(zbt, "sensor id:%d need to update", item.asInt());
} }
} }
} }
@ -221,15 +225,43 @@ int SensorScheduler::Init()
return 0; return 0;
} }
int SensorScheduler::GetNextDuration(int pan_id) {
int id = 0;
auto iter = short_addr_map_.find(pan_id);
if (iter == short_addr_map_.end()) {
zlog_error(zct, "cannot find id for pan_id %d", pan_id);
return 0;
} else {
id = iter->second;
}
long current_ts = GetLocalTs();
long next_ts = CalcNextTimestamp(id);
int duration = next_ts - current_ts;
zlog_debug(zct, "[%d] next duration is %d", id, duration);
return 0;
}
long SensorScheduler::GetBaseTimestamp(int pan_id) {
int id = 0;
auto iter = short_addr_map_.find(pan_id);
if (iter == short_addr_map_.end()) {
zlog_error(zct, "cannot find id for pan_id %d", pan_id);
return 0;
} else {
id = iter->second;
}
return start_timestamp_ + (id - 1) * eigen_value_send_duration_;
}
long SensorScheduler::CalcNextTimestamp(int id) { long SensorScheduler::CalcNextTimestamp(int id) {
// current_ts_ = GetLocalTs(); // current_ts_ = GetLocalTs();
if (ts_in_eigen_slice_) { if (ts_in_eigen_slice_) {
int forward_wave_slice_num = nth_eigen_value_slice_ * wave_slice_num_per_eigen_interval_; int forward_wave_slice_num = nth_eigen_value_slice_ * wave_slice_num_per_eigen_interval_;
auto wave_slice_iter = sensor_id_nth_slice_.find(id); auto wave_slice_iter = sensor_id_nth_slice_.find(id);
if (wave_slice_iter == sensor_id_nth_slice_.end()) { if (wave_slice_iter == sensor_id_nth_slice_.end()) {
printf("[Error] invaild id:%d, not find wave slice id\n", id); zlog_error(zct, "invaild id:%d, not find wave slice id", id);
long available_ts = current_wave_start_ts_ + eigen_value_send_interval_ + nth_eigen_slice_ * eigen_value_send_duration_; long available_ts = current_wave_start_ts_ + eigen_value_send_interval_ + nth_eigen_slice_ * eigen_value_send_duration_;
printf("[Error] [%d] next feature send utc time:[%s]\n", id, GetUTCTime(available_ts).c_str()); zlog_error(zct, "[%d] next feature send utc time:[%s]", id, GetUTCTime(available_ts).c_str());
return available_ts; return available_ts;
} }
int wave_slice = wave_slice_iter->second; // 从1开始 int wave_slice = wave_slice_iter->second; // 从1开始
@ -240,7 +272,7 @@ long SensorScheduler::CalcNextTimestamp(int id) {
for (int i = forward_wave_slice_num; i <= forward_wave_slice_num + wave_slice_num_per_eigen_interval_; ++i) { for (int i = forward_wave_slice_num; i <= forward_wave_slice_num + wave_slice_num_per_eigen_interval_; ++i) {
if (wave_slice - 1 == i) { if (wave_slice - 1 == i) {
send_wave_ts = current_wave_start_ts_ + eigen_value_slice_total_seconds_ + (i - forward_wave_slice_num) * seconds_per_wave_slice_; send_wave_ts = current_wave_start_ts_ + eigen_value_slice_total_seconds_ + (i - forward_wave_slice_num) * seconds_per_wave_slice_;
printf("[%d] send wave time:[%s]\n", id, GetUTCTime(send_wave_ts).c_str()); zlog_debug(zct, "[%d] send wave time:[%s]\n", id, GetUTCTime(send_wave_ts).c_str());
break; break;
} }
} }
@ -257,7 +289,7 @@ long SensorScheduler::CalcNextTimestamp(int id) {
if (free_slice_ocuppied_.count(current_wave_slice_ts) == 0) { if (free_slice_ocuppied_.count(current_wave_slice_ts) == 0) {
available_ts = current_wave_slice_ts; available_ts = current_wave_slice_ts;
free_slice_ocuppied_.insert(available_ts); free_slice_ocuppied_.insert(available_ts);
printf("[%d] %d nth free wave slice will be used to upgrade, utc time:[%s]\n", id, i+forward_wave_slice_num, GetUTCTime(available_ts).c_str()); zlog_debug(zct, "[%d] %d nth free wave slice will be used to upgrade, utc time:[%s]", id, i+forward_wave_slice_num, GetUTCTime(available_ts).c_str());
break; break;
} }
} }
@ -266,19 +298,19 @@ long SensorScheduler::CalcNextTimestamp(int id) {
} }
if (send_wave_ts > 0 && available_ts > 0) { if (send_wave_ts > 0 && available_ts > 0) {
long min_ts = std::min(send_wave_ts, available_ts); long min_ts = std::min(send_wave_ts, available_ts);
printf("[%d] will use nearest time:%s\n", id, GetUTCTime(min_ts).c_str()); zlog_debug(zct, "[%d] will use nearest time:%s", id, GetUTCTime(min_ts).c_str());
return min_ts; return min_ts;
} }
if (send_wave_ts + available_ts > 0) { if (send_wave_ts + available_ts > 0) {
long max_ts = std::max(send_wave_ts, available_ts); long max_ts = std::max(send_wave_ts, available_ts);
printf("[%d] will use vaild time:%s\n", id, GetUTCTime(max_ts).c_str()); zlog_debug(zct, "[%d] will use vaild time:%s", id, GetUTCTime(max_ts).c_str());
return max_ts; return max_ts;
} }
} }
// 如果是在当前波形时间窗中,不管是空闲时间窗,还是发送波形的时间窗,下一个时间窗是特征值 // 如果是在当前波形时间窗中,不管是空闲时间窗,还是发送波形的时间窗,下一个时间窗是特征值
long available_ts = current_wave_start_ts_ + eigen_value_send_interval_ + (id - 1) * eigen_value_send_duration_; long available_ts = current_wave_start_ts_ + eigen_value_send_interval_ + (id - 1) * eigen_value_send_duration_;
printf("[%d] next feature send utc time:[%s]\n", id, GetUTCTime(available_ts).c_str()); zlog_debug(zct, "[%d] next feature send utc time:[%s]", id, GetUTCTime(available_ts).c_str());
return available_ts; return available_ts;
} }
@ -294,7 +326,7 @@ int SensorScheduler::GetAvailableId(int pan_id) {
break; break;
} }
} }
printf("[GetAvailableId][%d] pan id : %d\n", available_id, pan_id); zlog_warn(zct, "[GetAvailableId][%d] pan id : %d", available_id, pan_id);
Json::Value root; Json::Value root;
Json::Value item; Json::Value item;
item["id"] = available_id; item["id"] = available_id;
@ -323,12 +355,8 @@ int SensorScheduler::StartSchedule(int pan_id, int &next_duration) {
} else { } else {
id = iter->second; id = iter->second;
} }
// 通过pan_id找到id
// current_ts_ = 1730170142; // 当前时间 current_ts_ = GetLocalTs();
// current_ts_ = 1730170148; // 第2个特征值时间片
// current_ts_ = 1730170154; // 第3个特征值时间片
current_ts_ = 1730177342; // 2小时后的第一个时间片
// current_ts_ = GetLocalTs();
nth_wave_start_slice_ = (current_ts_ - start_timestamp_) / wave_form_send_interval_; nth_wave_start_slice_ = (current_ts_ - start_timestamp_) / wave_form_send_interval_;
current_wave_start_ts_ = nth_wave_start_slice_ * wave_form_send_interval_ + start_timestamp_; current_wave_start_ts_ = nth_wave_start_slice_ * wave_form_send_interval_ + start_timestamp_;
@ -347,31 +375,31 @@ int SensorScheduler::StartSchedule(int pan_id, int &next_duration) {
} }
printf("[%d] current utc:%s\n", id, GetUTCTime(current_ts_).c_str()); zlog_debug(zct, "[%d] current utc:%s", id, GetUTCTime(current_ts_).c_str());
if (ts_in_eigen_slice_) { if (ts_in_eigen_slice_) {
if (id == nth_eigen_slice_ + 1) { if (id == nth_eigen_slice_ + 1) {
// 传感器需要执行上送特征值任务, 如果有配置需要下发的话,下发配置 // 传感器需要执行上送特征值任务, 如果有配置需要下发的话,下发配置
if (update_.count(id)) { if (update_.count(id)) {
// execute config // execute config
printf("[%d] update config in eigen slice\n", id); zlog_debug(zct, "[%d] update config in eigen slice", id);
current_request_ = kScheduleConfigSensor; current_request_ = kScheduleConfigSensor;
return kScheduleConfigSensor; return kScheduleConfigSensor;
} else { } else {
// 执行上送特征值任务 // 执行上送特征值任务
printf("[%d] send eigen value in eigen slice\n", id); zlog_debug(zct, "[%d] send eigen value in eigen slice", id);
current_request_ = kScheduleEigenValue; current_request_ = kScheduleEigenValue;
return kScheduleEigenValue; return kScheduleEigenValue;
} }
} else { } else {
printf("[%d] Invalid request, revive in %d eigen slice\n", id, nth_eigen_slice_ + 1); zlog_debug(zct, "[%d] Invalid request, revive in %d eigen slice", id, nth_eigen_slice_ + 1);
if (id < nth_eigen_slice_ + 1) { if (id < nth_eigen_slice_ + 1) {
// 不正确的请求 // 不正确的请求
long available_ts = current_wave_start_ts_ + eigen_value_send_interval_ + (id - 1) * eigen_value_send_duration_; long available_ts = current_wave_start_ts_ + eigen_value_send_interval_ + (id - 1) * eigen_value_send_duration_;
printf("[%d] wrong time in eigen slice, next feature in next interval send utc time:[%s]\n", id, GetUTCTime(available_ts).c_str()); zlog_debug(zct, "[%d] wrong time in eigen slice, next feature in next interval send utc time:[%s]", id, GetUTCTime(available_ts).c_str());
next_duration = available_ts - current_ts_; next_duration = available_ts - current_ts_;
} else { } else {
long available_ts = current_wave_start_ts_ + (id - 1) * eigen_value_send_duration_; long available_ts = current_wave_start_ts_ + (id - 1) * eigen_value_send_duration_;
printf("[%d] wrong time in eigen slice, next feature in current interval send utc time:[%s]\n", id, GetUTCTime(available_ts).c_str()); zlog_debug(zct, "[%d] wrong time in eigen slice, next feature in current interval send utc time:[%s]", id, GetUTCTime(available_ts).c_str());
next_duration = available_ts - current_ts_; next_duration = available_ts - current_ts_;
} }
return kScheduleWrongTime; return kScheduleWrongTime;
@ -380,7 +408,7 @@ int SensorScheduler::StartSchedule(int pan_id, int &next_duration) {
int nth_wave_slice = nth_eigen_value_slice_ * wave_slice_num_per_eigen_interval_ + nth_wave_slice_; int nth_wave_slice = nth_eigen_value_slice_ * wave_slice_num_per_eigen_interval_ + nth_wave_slice_;
auto wave_slice_iter = sensor_id_nth_slice_.find(id); auto wave_slice_iter = sensor_id_nth_slice_.find(id);
if (wave_slice_iter == sensor_id_nth_slice_.end()) { if (wave_slice_iter == sensor_id_nth_slice_.end()) {
printf("[%d]invaild id, not find wave slice id, need to check further\n", id); zlog_error(zct, "[%d]invaild id, not find wave slice id, need to check further", id);
return kScheduleUnknownSensor; return kScheduleUnknownSensor;
} else { } else {
if (nth_wave_slice == wave_slice_iter->second) { if (nth_wave_slice == wave_slice_iter->second) {
@ -389,7 +417,7 @@ int SensorScheduler::StartSchedule(int pan_id, int &next_duration) {
if (upgrade_iter != upgrade_.end()) { if (upgrade_iter != upgrade_.end()) {
if (upgrade_iter->second.try_times < 10) { if (upgrade_iter->second.try_times < 10) {
current_request_ = kScheduleUpgrade; current_request_ = kScheduleUpgrade;
printf("[%d] in wave slice to upgrade now from version:%s to %s, try time:%d\n", zlog_warn(zct, "[%d] in wave slice to upgrade now from version:%s to %s, try time:%d",
id, upgrade_iter->second.current_sw_version.c_str(), id, upgrade_iter->second.current_sw_version.c_str(),
upgrade_iter->second.upgrade_sw_version.c_str(), upgrade_iter->second.try_times); upgrade_iter->second.upgrade_sw_version.c_str(), upgrade_iter->second.try_times);
return kScheduleUpgrade; return kScheduleUpgrade;
@ -398,7 +426,7 @@ int SensorScheduler::StartSchedule(int pan_id, int &next_duration) {
if (update_.count(id)) { if (update_.count(id)) {
// execute config // execute config
printf("[%d] in wave slice to update config\n", id); zlog_debug(zct, "[%d] in wave slice to update config", id);
current_request_ = kScheduleConfigSensor; current_request_ = kScheduleConfigSensor;
return kScheduleConfigSensor; return kScheduleConfigSensor;
} }
@ -411,7 +439,7 @@ int SensorScheduler::StartSchedule(int pan_id, int &next_duration) {
if (upgrade_iter != upgrade_.end()) { if (upgrade_iter != upgrade_.end()) {
if (upgrade_iter->second.try_times < 10) { if (upgrade_iter->second.try_times < 10) {
current_request_ = kScheduleUpgrade; current_request_ = kScheduleUpgrade;
printf("[%d] in idle to upgrade now from version:%s to %s, try time:%d\n", zlog_debug(zct, "[%d] in idle to upgrade now from version:%s to %s, try time:%d",
id, upgrade_iter->second.current_sw_version.c_str(), id, upgrade_iter->second.current_sw_version.c_str(),
upgrade_iter->second.upgrade_sw_version.c_str(), upgrade_iter->second.try_times); upgrade_iter->second.upgrade_sw_version.c_str(), upgrade_iter->second.try_times);
return kScheduleUpgrade; return kScheduleUpgrade;
@ -420,14 +448,14 @@ int SensorScheduler::StartSchedule(int pan_id, int &next_duration) {
if (update_.count(id)) { if (update_.count(id)) {
// execute config // execute config
printf("[%d] in idle time to update config\n", id); zlog_debug(zct, "[%d] in idle time to update config", id);
current_request_ = kScheduleConfigSensor; current_request_ = kScheduleConfigSensor;
return kScheduleConfigSensor; return kScheduleConfigSensor;
} }
} }
// wrong time to come // wrong time to come
long available_ts = current_wave_start_ts_ + eigen_value_send_interval_ + (id - 1) * eigen_value_send_duration_; long available_ts = current_wave_start_ts_ + eigen_value_send_interval_ + (id - 1) * eigen_value_send_duration_;
printf("[%d] wrong time in wave slice, next feature send utc time:[%s]\n", id, GetUTCTime(available_ts).c_str()); zlog_warn(zct, "[%d] wrong time in wave slice, next feature send utc time:[%s]", id, GetUTCTime(available_ts).c_str());
next_duration = available_ts - current_ts_; next_duration = available_ts - current_ts_;
return kScheduleWrongTime; return kScheduleWrongTime;
} }
@ -439,7 +467,7 @@ int SensorScheduler::Config(int eigen_value_send_interval, int wave_form_send_in
int eigen_value_send_duration, int wave_form_send_duration, int eigen_value_send_duration, int wave_form_send_duration,
int max_sensor_num) { int max_sensor_num) {
if (!support_modification_) { if (!support_modification_) {
printf("not support modification"); zlog_warn(zct, "not support modification");
return 1; return 1;
} }
@ -456,7 +484,6 @@ int SensorScheduler::Config(int eigen_value_send_interval, int wave_form_send_in
return ret; return ret;
} }
eigen_value_send_interval_ = eigen_value_send_interval; eigen_value_send_interval_ = eigen_value_send_interval;
eigen_value_send_duration_ = eigen_value_send_duration; eigen_value_send_duration_ = eigen_value_send_duration;
wave_form_send_interval_ = wave_form_send_interval; wave_form_send_interval_ = wave_form_send_interval;
@ -489,24 +516,24 @@ int SensorScheduler::CalcAvailableSlice(int eigen_value_send_interval, int wave_
int eigen_value_send_duration, int wave_form_send_duration, int eigen_value_send_duration, int wave_form_send_duration,
int max_sensor_num, int &available_slice, int &free_slice) { int max_sensor_num, int &available_slice, int &free_slice) {
if (max_sensor_num <= 0) { if (max_sensor_num <= 0) {
printf("invalid max_sensor_num:%d\n", max_sensor_num); zlog_error(zbt, "invalid max_sensor_num:%d", max_sensor_num);
return 1; return 1;
} }
if (max_sensor_num * eigen_value_send_duration > eigen_value_send_interval) { if (max_sensor_num * eigen_value_send_duration > eigen_value_send_interval) {
printf("invalid eigen_value_send_interval:%d and eigen_value_send_duration:%d, max_sensor_num:%d\n", zlog_error(zbt, "invalid eigen_value_send_interval:%d and eigen_value_send_duration:%d, max_sensor_num:%d",
eigen_value_send_interval, eigen_value_send_duration, max_sensor_num); eigen_value_send_interval, eigen_value_send_duration, max_sensor_num);
return 2; return 2;
} }
if (max_sensor_num * wave_form_send_duration > wave_form_send_interval) { if (max_sensor_num * wave_form_send_duration > wave_form_send_interval) {
printf("invalid wave_form_send_interval:%d and wave_form_send_duration:%d, max_sensor_num:%d\n", zlog_error(zbt, "invalid wave_form_send_interval:%d and wave_form_send_duration:%d, max_sensor_num:%d",
wave_form_send_interval, wave_form_send_duration, max_sensor_num); wave_form_send_interval, wave_form_send_duration, max_sensor_num);
return 3; return 3;
} }
if (wave_form_send_interval % eigen_value_send_interval != 0) { if (wave_form_send_interval % eigen_value_send_interval != 0) {
printf("invalid eigen_value_send_interval:%d and wave_form_send_interval:%d\n", zlog_error(zbt, "invalid eigen_value_send_interval:%d and wave_form_send_interval:%d",
eigen_value_send_interval, wave_form_send_interval); eigen_value_send_interval, wave_form_send_interval);
return 4; return 4;
} }
@ -517,7 +544,7 @@ int SensorScheduler::CalcAvailableSlice(int eigen_value_send_interval, int wave_
available_slice = wave_form_send_interval / eigen_value_send_interval * slice_per_eigen_value_interval; available_slice = wave_form_send_interval / eigen_value_send_interval * slice_per_eigen_value_interval;
free_slice = available_slice - max_sensor_num; free_slice = available_slice - max_sensor_num;
if (free_slice < 0) { if (free_slice < 0) {
printf("invalid config, available slice:%d, required slice:%d\n", available_slice, max_sensor_num); zlog_error(zbt, "invalid config, available slice:%d, required slice:%d", available_slice, max_sensor_num);
return 5; return 5;
} }
return 0; return 0;
@ -526,7 +553,7 @@ int SensorScheduler::CalcAvailableSlice(int eigen_value_send_interval, int wave_
long SensorScheduler::GetLocalTs() { long SensorScheduler::GetLocalTs() {
auto now = std::chrono::system_clock::now(); auto now = std::chrono::system_clock::now();
auto timestamp = std::chrono::duration_cast<std::chrono::seconds>(now.time_since_epoch()).count(); auto timestamp = std::chrono::duration_cast<std::chrono::seconds>(now.time_since_epoch()).count();
printf("current timestamp:%lld\n", timestamp); // zlog_debug(zct, "current timestamp:%lld", timestamp);
return timestamp; return timestamp;
} }
@ -539,7 +566,7 @@ long SensorScheduler::GetLocalWorldTime(std::string &world_time) {
local_time->tm_year + 1900, local_time->tm_mon+1, local_time->tm_mday, local_time->tm_hour, local_time->tm_min, local_time->tm_sec); local_time->tm_year + 1900, local_time->tm_mon+1, local_time->tm_mday, local_time->tm_hour, local_time->tm_min, local_time->tm_sec);
world_time = str; world_time = str;
auto timestamp = std::chrono::duration_cast<std::chrono::seconds>(now.time_since_epoch()).count(); auto timestamp = std::chrono::duration_cast<std::chrono::seconds>(now.time_since_epoch()).count();
printf("world time:%s, timestamp:%lld\n", world_time.c_str(), timestamp); // zlog_debug(zct, "world time:%s, timestamp:%lld", world_time.c_str(), timestamp);
return timestamp; return timestamp;
} }

View File

@ -8,7 +8,7 @@
#include <stdint.h> #include <stdint.h>
#include <boost/container/detail/singleton.hpp> #include <boost/container/detail/singleton.hpp>
#define SCHEDULE_CONFIG "./schedule_test.json" #define SCHEDULE_CONFIG "./schedule.json"
#define BASE_RELATION "./base_relation.json" #define BASE_RELATION "./base_relation.json"
#define CONFIG_UPDATE "./config_update.json" #define CONFIG_UPDATE "./config_update.json"
#define UPGRADE_CONFIG "./upgrade.json" #define UPGRADE_CONFIG "./upgrade.json"
@ -40,6 +40,8 @@ public:
int Init(); int Init();
int StartSchedule(int pan_id, int &next_duration); int StartSchedule(int pan_id, int &next_duration);
int GetNextDuration(int pan_id);
long GetBaseTimestamp(int id);
long CalcNextTimestamp(int id); long CalcNextTimestamp(int id);
int Config(int eigen_value_send_interval, int wave_form_send_interval, int Config(int eigen_value_send_interval, int wave_form_send_interval,